------------------------------------------------------------
Classification metrics on the full dataset
top_k_accuracies: [0.627, 0.791, 0.872, 0.919, 0.948, 0.963, 0.972, 0.981, 0.986, 0.99, 0.992, 0.994, 0.995, 0.997, 0.998, 0.998, 0.999, 1.0, 1.0]
precision recall f1-score support
class_aeroplane 0.845722 0.842179 0.843947 716
class_bicycle 0.684800 0.709784 0.697068 603
class_bird 0.824087 0.753713 0.787330 808
class_boat 0.742215 0.812500 0.775769 528
class_bottle 0.528107 0.463636 0.493776 770
class_bus 0.930131 0.488532 0.640602 436
class_car 0.770690 0.478075 0.590099 935
class_cat 0.834171 0.755232 0.792741 1099
class_chair 0.650485 0.191246 0.295588 1051
class_cow 0.591912 0.501558 0.543002 321
class_diningtable 0.154143 0.615385 0.246533 130
class_dog 0.817500 0.569191 0.671113 1149
class_horse 0.574928 0.827801 0.678571 482
class_motorbike 0.708625 0.706977 0.707800 430
class_pottedplant 0.320080 0.626459 0.423684 257
class_sheep 0.594667 0.688272 0.638054 324
class_sofa 0.280967 0.657244 0.393651 283
class_train 0.537217 0.905455 0.674340 550
class_tvmonitor 0.397338 0.749104 0.519255 279
accuracy: 0.627028966012